Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...







Learn how to remove samples with no data, subgroup samples, and make Kaplan Meier plots











Step-by-step tutorials to get you started and our schedule of upcoming webinars
Tutorials, Live Examples, and How to pages for UCSC Xena


Learn how to view your own data using data from the Chinese Glioma Genome Atlas (CGGA)










Learn how to compare tumor samples to normal samples using our TCGA TARGET GTEx study
Live Examples of what types of visualizations and analyses you can perform using UCSC Xena
Step-by-step instructions for our most common use cases


Learn how to use the pick samples feature, how to view multiple genes in a single column, how to view a signature, and how to run a differential expression analysis



More details about all the features we have on Xena




This dynamic, powerful, and flexible view is our default view into the data.



A tool developed by the Stuart Lab to view samples in a 2D layout


pip install 'git+https://github.com/ucscXena/xenaPython'
pip install --upgrade 'git+https://github.com/ucscXena/xenaPython'import xenaPython as xena import xenaPython as xena
hub = "https://toil.xenahubs.net"
dataset = "tcga_RSEM_gene_tpm"
samples = xena.dataset_samples (hub, dataset, None)
samples = xena.dataset_samples (hub, dataset, 10)
samples = ["TCGA-02-0047-01","TCGA-02-0055-01","TCGA-02-2483-01"]
probes = ['ENSG00000282740.1', 'ENSG00000000005.5']
[position, [ENSG00000282740_1, ENSG00000000005_5]] = xena.dataset_probe_values (hub, dataset, samples, probes)
ENSG00000282740_1
[-9.9658, -2.8262, -9.9658]import xenaPython
help(xenaPython)--database -d default to ${HOME}/xena/database--logfile default to ${HOME}/xena/xena.log--root -r default to ${HOME}/xena/files/#!/bin/bash
PORT=7222
LOGFILE=xena/xena7222.log
DOCROOT=xena/files
DB=xena/myHub
java -jar server.jar -r ${DOCROOT} -d ${DB} --no-gui -p ${PORT} -H 0.0.0.0 --logfile ${LOGFILE} --certfile ${CERTFILE} --keyfile ${KEYFILE}> log 2>&1 &
disownln -sf cavm-0.xx.0-standalone.jar server.jarchmod u+x start_script./start_scriptln -sf cavm-x.xx.x-standalone.jar server.jarjava -jar server.jar -l /path/to/root/file.tsvjava -jar server.jar -p ${PORT} -l /path/to/root/file.tsvjava -jar server.jar -x /path/to/root/file.tsvjava -jar server.jar -p ${PORT} -l /path/to/root/file.tsvssh -i "xena.pem" ec2-user@ec2-11-111-11-111.compute-1.amazonaws.comssh -i "xena.pem" -L 8000:localhost:7222 ec2-user@ec2-11-111-11-111.compute-1.amazonaws.com<VirtualHost *:443>
ServerName tcga.xenahubs.net
SSLEngine on
SSLProxyEngine On
SSLProxyVerify none
SSLProxyCheckPeerCN off
SSLProxyCheckPeerName off
SSLProxyCheckPeerExpire off
SSLCertificateFile YOURCERTIFICATE
SSLCertificateKeyFile YOURKEY
# setup the proxy
ProxyPreserveHost On
ProxyPass / https://localhost:9000/
ProxyPassReverse / https://localhost:9001/
</VirtualHost>Step-by-step instructions to viewing your own data

{"type":"mutationVector"}{"type":"mutationVector",
"cohort":"TCGA Breast Cancer"}{"type":"mutationVector",
"cohort":"TCGA Breast Cancer",
"assembly":"hg19"}#id gene chrom chromStart chromEnd strand
id_1 AADACL3 chr1 12776118 12776347 +host =“https://reference.xenahubs.net”
xenaPython.probemap_list(host){"type":"genomicMatrix",
"cohort":"TCGA Breast Cancer",
":probeMap":"/unc_v2_exon_hg19_probe_TCGA"}{ “type”:“probeMap”,
“assembly”:“hg19"}java -jar cavm-0.xx.0-standalone.jar -l ~/xena/files/*java -jar cavm-0.xx.0-standalone.jar -l ~/xena/files/file1.tsvjava -jar cavm-0.xx.0-standalone.jar -x ~/xena/files/file1.tsvjava -jar cavm-0.xx.0-standalone.jar -x ~/xena/files/file1.tsv ~/xena/files/file2.tsvjava -jar cavm-0.xx.0-standalone.jar -h

metadata (.json file) specification
How to programmatically specify Xena Browser views

{
"type": "clinicalMatrix",
"cohort": "name of the cohort",
"label": "display label of the file",
"dataSubType": "the section the dataset is displayed under in Xena Datapages, describe what data is in the life",
"map": [
{
"label": "display label of the map",
"dataSubType": "embedding",
"dimension": ["UMAP_1","UMAP_2","UMAP_3"]
}
]
}{
"type": "clinicalMatrix",
"cohort": "name of the cohort",
"label": "display label of the file",
"dataSubType": "the section the dataset is displayed under in Xena Datapages, describe what data is in the life",
"map": [
{
"label": "display label of the map",
"dataSubType": "spatial",
"dimension": ["X","Y"],
"unit": "pixel",
"spot_diameter": 178.37655999999998,
"micrometer_per_unit": 0.3083364764966877,
"image": [
{
"label": "display label of the image",
"path": "image file path",
"size": [24240, 24240],
"offset": [0,0],
"image_scalef": 1,
},
{
"label": "display label of the image",
"path": "image file path",
"size": [2000, 2000],
"offset": [0,0],
"image_scalef": 0.08250825
}]
}]
}{
"type": "clinicalMatrix",
"dataSubtype": "phenotype",
"label": "display label of the file",
"cohort": "name of the cohort",
"bioentity":"cell",
"map":[
{
"label":"mIF H&E coregistered",
"type":"spatial",
"dimension":["CenterX", "CenterY"],
"unit":"pixel",
"micrometer_per_unit":0.120280945,
"spot_diameter":84,
"image":[
{
"label":"morphology 2D image, coregistered H&E",
"path":"/CosMx/img",
"offset": [0, 0],
"image_scalef": 1
}
],
"transcript":[
{
"label":"CosMx transcript data",
"path":"transcripts.tsv",
"dimension":["x","y"]
}
]
}
]
}
{
"cohort": "TCGA Breast Cancer (BRCA)",
"dataSubType": "phenotype",
"label": "Curated survival data",
"type": "clinicalMatrix",
"units": {
"OS": "days",
"DSS": "days",
"DFI": "days",
"PFI": "days"
}
}{
"cohort": "TCGA Breast Cancer (BRCA)",
"label": "label of you dataset",
"type": "clinicalMatrix",
":clinialFeature": "clinicalFeature.txt"
}feature attribute value
alcohol_history valueType category
alcohol_history state no
alcohol_history state yes
alcohol_history_intensity stateOrder "no","yes"{
"type":"clinicalFeature"
}{
"cohort": "TCGA Acute Myeloid Leukemia (LAML)",
"dataSubType": "gene expression RNAseq",
"label": "IlluminaHiSeq",
"colNormalization": true,
"type": "genomicMatrix",
"unit": "log2(norm_count+1)"
}<html>
<script>
window.onload = function() {
var browser = 'https://xenabrowser.net/';
var hub1 = 'https://toil.xenahubs.net';
var dataset1 = 'tcga_Kallisto_tpm';
var hub2 = 'https://tcga.xenahubs.net';
var dataset2 = 'TCGA.PANCAN.sampleMap/Gistic2_CopyNumber_Gistic2_all_data_by_genes';
var hub3 = 'https://pancanatlas.xenahubs.net';
var dataset3 = 'Survival_SupplementalTable_S1_20171025_xena_sp';
var hub4 = 'https://pancanatlas.xenahubs.net';
var dataset4 = 'broad.mit.edu_PANCAN_Genome_Wide_SNP_6_whitelisted.xena';
var hub5 = 'https://gdc.xenahubs.net';
var dataset5 = 'TCGA-BRCA.somaticmutation_wxs.tsv';
var col1 = {name: dataset1, host: hub1, fields: 'TP53 FOXM1'};
var col2 = {name: dataset2, host: hub2, fields: 'FOXM1'};
var col3 = {name: dataset3, host: hub3, fields: 'cancer type abbreviation'};
var col4 = {name: dataset4, host: hub4, fields: 'chr3:4000000-4100000'};
var col5 = {
name: dataset1,
host: hub1,
width: 400,
columnLabel: 'top column label',
fieldLabel: 'bottom column label',
fields: 'ENST00000064780.6 ENST00000066544.7 ENST00000070846.10 ENST00000072516.7 ENST00000072644.5 ENST00000072869.8 ENST00000074304.9 ENST00000075120.11 ENST00000075322.10'
};
var col6 = {name: dataset1, host: hub1, fields: 'TP53'};
var col6_geneAve = {name: dataset1, host: hub1, fields: 'TP53', geneAverage: true};
var col7 = {name: dataset5, host: hub5, fields: 'TP53'};
var col7_showIntron = {name: dataset5, host: hub5, fields: 'TP53', showIntrons: true};
var col8 = {
name: dataset1,
host: hub1,
fields: 'TP53 FOXM1',
sortDirection: 'reverse'
};
var heatmapChart = JSON.stringify({
mode: 'chart'
});
var heatmapHideWelcome = JSON.stringify({
showWelcome: false,
});
var columns1 = JSON.stringify([col1]);
var l1 = document.getElementById('link1');
l1.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns1);
var columns2 = JSON.stringify([col1, col2]);
var l2 = document.getElementById('link2');
l2.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns2) + '&heatmap=' + encodeURIComponent(heatmapChart);
var columns3 = JSON.stringify([col3, col2, col4]);
var l3 = document.getElementById('link3');
l3.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns3);
var columns4 = JSON.stringify([col3, col5]);
var l4 = document.getElementById('link4');
l4.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns4);
var columns5 = JSON.stringify([col8]);
var l5 = document.getElementById('link5');
l5.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns5);
var columns6 = JSON.stringify([col6, col6_geneAve]);
var l6 = document.getElementById('link6');
l6.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns6);
var columns7 = JSON.stringify([col7, col7_showIntron]);
var l7 = document.getElementById('link7');
l7.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns7) + '&heatmap=' + encodeURIComponent(heatmapHideWelcome);
};
</script>
<body>
<a id=link1>Example 1</a> One data column (with two subcolumns) display
<br><br>
<a id=link2>Example 2</a> Display in chart mode
<br><br>
<a id=link3>Example 3</a> Three data column display, one clinical data column, two genomic data columns
<br><br>
<a id=link4>Example 4</a> Specify column width, top label, and bottom label on Column C
<br><br>
<a id=link5>Example 5</a> Reverse sort on Column B
<br><br>
<a id=link6>Example 6</a> Display gene average in Column C
<br><br>
<a id=link7>Example 7</a> Display introns in Column C; Hide welcome banner
</body>
</html><html>
<script>
window.onload = function() {
var browser = 'https://xenabrowser.net/';
var columns = JSON.stringify([
{
"width": 136,
"columnLabel": "gene expression RNAseq - IlluminaHiSeq",
"fieldLabel": "TP53",
"showIntrons": true,
"host": "https://tcga.xenahubs.net",
"name": "TCGA.BRCA.sampleMap/HiSeqV2",
"fields": "TP53"
},
{
"width": 200,
"columnLabel": "somatic mutation (SNPs and small INDELs) - MC3 public version",
"fieldLabel": "TP53",
"host": "https://tcga.xenahubs.net",
"name": "mc3/BRCA_mc3.txt",
"fields": "TP53"
}
]);
var heatmap1 = JSON.stringify({
showWelcome: false,
searchSampleList: ["TCGA-C8-A131-01", "TCGA-BH-A0DL-01"]
});
var l1 = document.getElementById('link1');
l1.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns) + '&heatmap=' + encodeURIComponent(heatmap1);
var heatmap2 = JSON.stringify({
showWelcome: false,
search: "B:>10"
});
var l2 = document.getElementById('link2');
l2.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns) + '&heatmap=' + encodeURIComponent(heatmap2);
};
</script>
<body>
<a id=link1>Sample highlight example 1:</a> highlight samples of specific sample IDs, such as TCGA-C8-A131-01 or TCGA-BH-A0DL-01
<br>
<a id=link2>Sample highlight example 2:</a> highlight samples matching arbitary criteria, such as samples in Column B with values > 10
</body>
</html><html>
<script>
window.onload = function() {
var browser = 'http://dev.xenabrowser.net/';
var columns = JSON.stringify([
{
"width": 90,
"columnLabel": "",
"fieldLabel": "site id",
"host": "https://xena.treehouse.gi.ucsc.edu",
"name": "clinical_TumorCompendium_v11_PolyA_2020-04-09.tsv",
"fields": "site_id"
},
{
"width": 150,
"columnLabel": "gene expression RNAseq",
"fieldLabel": "ALK",
"host": "https://xena.treehouse.gi.ucsc.edu",
"name": "TumorCompendium_v11_PolyA_AllSamples_AllGenes_Kallisto_HugoLog2TPM_20230630.tsv",
"fields": "ALK"
}
]);
var heatmap1 = JSON.stringify({
showWelcome: false,
searchSampleList: ["THR30_0820_S01", "THR30_0861_S01"]
});
var l1 = document.getElementById('link1');
l1.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns) + '&heatmap=' + encodeURIComponent(heatmap1);
var heatmap2 = JSON.stringify({
showWelcome: false,
search: "B:=TARGET"
});
var l2 = document.getElementById('link2');
l2.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns) + '&heatmap=' + encodeURIComponent(heatmap2);
var heatmap3 = JSON.stringify({
filter: "B:TARGET",
});
var l3 = document.getElementById('link3');
l3.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns) + '&heatmap=' + encodeURIComponent(heatmap3);
var heatmap4 = JSON.stringify({
showWelcome: false,
filter: "B:TARGET OR B:TCGA",
});
var l4 = document.getElementById('link4');
l4.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns) + '&heatmap=' + encodeURIComponent(heatmap4);
var heatmap5 = JSON.stringify({
showWelcome: false,
filter: "B: TARGET",
searchSampleList: ["TARGET-40-0A4I6O-01A-01R"]
});
var l5 = document.getElementById('link5');
l5.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns) + '&heatmap=' + encodeURIComponent(heatmap5);
var filterColumns = JSON.stringify([{
"host": "https://xena.treehouse.gi.ucsc.edu",
"name": "clinical_TumorCompendium_v11_PolyA_2020-04-09.tsv",
"fields": "age_at_dx"
}]);
var heatmap6 = JSON.stringify({
showWelcome: false,
filter: "D:<5",
});
var l6 = document.getElementById('link6');
l6.href = browser + 'heatmap/?columns=' + encodeURIComponent(columns) + '&filterColumns=' + encodeURIComponent(filterColumns) + '&heatmap=' + encodeURIComponent(heatmap6);
};
</script>
<body>
<a id=link1>Sample highlight Example 1:</a> highlight samples of specific sample IDs, such as THR30_0820_S01 or THR30_0861_S01
<br><br>
<a id=link2>Sample highlight Example 2:</a> highlight samples matching an arbitary criteria, such as TARGET samples
<br><br>
<a id=link3>Sample filtering Example 1:</a> specify (filter to) what samples to show in a view using a predicate, such as TARGET samples
<br><br>
<a id=link4>Sample filtering Example 2:</a> specify samples in a view using a predicate that includes a boolean term, such as TARGET and TCGA samples (use boolean OR)
<br><br>
<a id=link5>Sample filtering and highlight at the same time:</a> specify samples in a view using a predicate (e.g. just show TARGET samples), as well as highlight specific samples by IDs, such as TARGET-40-0A4I6O-01A-01R
<br><br>
<a id=link6>Sample filtering using data in a hidden filter column:</a> useful when you want to filter samples using data not displayed on the screen. You can use <i>HIDDEN FILTER COLUMN</i>. For exmaple, filter the samples to < 5 years old, but you don't want to actually display the age column on the screen.
</body>
</html>var page = ‘https://xenabrowser.net/heatmap/’;
var url = page + ‘?columns=’ + encodeURIComponent(columns_parameter) + \
‘&heatmap=’ + encodeURIComponent(heatmap_parameter);var column = {name: dataset1, host: hub1, fields: 'foo bar'};
var columns_parameter = JSON.stringify([column]);
var url = page + ‘?columns=’ + encodeURIComponent(columns_parameter);var heatmap_paramter = JSON.stringify({
showWelcome: false,
search: "B:=TARGET"
});
var url = page + ‘?columns=’ + encodeURIComponent(columns_parameter) + \
‘?heatmap=’ + encodeURIComponent(heatmap_paramter);






























































